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Biomathematical models of fatigue can assist organisations to estimate the fatigue consequences of a
roster before operations commence. These estimates do not account for the diversity of sleep behaviours
exhibited by employees. The purpose of this study was to develop sleep transfer functions describing the
likely distributions of sleep around fatigue level estimates produced by a commercial biomathematical
model of fatigue. Participants included 347 (18 females, 329 males) train drivers working commercial
railway operations in Australia. They provided detailed information about their sleep behaviours using

I;?’:"st" sleep diaries and wrist activity monitors. On average, drivers slept for 7.7 (+1.7) h in the 24 h before work
Fatigpue and 15.1 (+2.5) h in the 48 h before work. The amount of sleep obtained by drivers before shifts differed
Shiftwork only marginally across morning, afternoon and night shifts. Shifts were also classified into one of seven

ranked categories using estimated fatigue level scores. Higher fatigue score categories were associated
with significant reductions in the amount of sleep obtained before shifts, but there was substantial
within-category variation. The study findings demonstrate that biomathematical models of fatigue have
utility for designing round-the-clock rosters that provide sufficient sleep opportunities for the average
employee. Robust variability in the amount of sleep obtained by drivers indicate that models are
relatively poor tools for ensuring that all employees obtain sufficient sleep. These findings demonstrate
the importance of developing approaches for managing the sleep behaviour of individual employees.

©2015 Elsevier Ltd. All rights reserved.

Biomathematical model

Fatigue risk management
Fatigue risk management system
Inter-individual differences

1. Introduction in a fatigued state, exhibiting symptoms or signs of fatigue. The

fatigued state arises because insufficient sleep is obtained to

In recent decades, the limitations of traditional hours of service
regulations for the management of fatigue have been recognized
(Jones et al., 2005; Sussman and Coplen, 2000). A consensus view is
emerging that effective fatigue risk management systems (FRMS)
may be achieved by policies and procedures implemented at the
organizational and individual employee levels (Lerman et al,
2012). Proponents argue that a locally-tailored fatigue-risk
management system can mitigate fatigue-related risks while
concurrently allowing greater flexibility in the hours that employ-
ees can work (Cabon et al., 2012; Dawson and Zee, 2005; Gander
et al, 2011).

In the FRMS framework, fatigue-related errors can be viewed as
the end-point of a causal sequence of events termed, ‘the fatigue
hazard trajectory’ (Dawson and McCulloch, 2005). The trajectory
concludes with a fatigue-related error committed by an individual
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maintain alertness at a given time of day after a given length of
wake. Insufficient sleep is attributable to either an organisational
failure to provide adequate rest opportunities or an individual
failure to obtain sufficient sleep in an otherwise adequate rest
opportunity.

The incidence of fatigue-related errors may be reduced via
screening assessments targeted at sequential steps of the hazard
trajectory (Dawson and McCulloch, 2005). Thus, biomathematical
models of fatigue use software-based algorithms to assess whether
scheduled work/rest periods provide employees with sufficient
sleep opportunities (Mallis et al., 2004). The amount of sleep
obtained by employees in these opportunities can be evaluated
when they report for work, using either sleep monitoring devices
or direct self-report. Symptoms and signs of fatigue that otherwise
present at work can be detected using one or more fatigue
recognition technologies (Balkin et al., 2011).

1.1. Biomathematical models of fatigue

Organisations implement biomathematical models to manage
the fatigue-related risks associated with hours of work. The scores
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output by biomathematical fatigue models vary in their specific
metrics, but all provide an estimate of the fatigue level associated
with rostered shifts (Mallis et al., 2004). The assumption
underlying numerical quantification is that higher levels of fatigue
yield elevated levels of fatigue-related risk. Outputs are typically
represented on a dimensionless numerical scale, i.e. without a unit
of measurement, but some models include transfer functions that
relate outputs to measurable phenomena, e.g. reaction time (Mallis
etal., 2004). The purpose of these is to provide an external frame of
reference for calibrating and interpreting model outputs.

The distinction between the fatigue level outputs produced by
models and fatigue-related risk is important. On the one hand,
‘fatigue level' refers to neurobehavioural deficits caused by
disturbances in circadian and sleep homeostatic processes
(Dijk and Archer, 2009). On the other, ‘fatigue-related risk’ refers
to the extent of exposure to the potential costs of accidents caused
by fatigue. The latter is the product of accident likelihood and the
financial, social and human cost of accidents. In the absence of
mitigating factors, fatigue level contributes to risk only by
increasing the likelihood of fatigue-related accidents. By implica-
tion, the association between outputs and risk is unlikely to be
constant across industries, nor within them.

Model outputs are typically used to classify shifts into tiered
risk categories based on fatigue model outputs, e.g. safe vs. unsafe,
low vs. moderate vs. high risk. Stratification of model outputs
provides a more convenient method for precluding a given
sequence of work or for imposing risk-mitigation strategies than
raw scores alone. To account for variable risk profiles across
industries, most commercial models permit organisations to
modify the fatigue score thresholds for delimiting categories of
risk. Despite this, industry reports and expert commentary
continue to raise concerns in respect to the potential for over-
reliance on fatigue models to evaluate safety risks (Civil Aviation
Safety Authority, 2014; Dawson et al., 2011; Fourie et al., 2010;
Gander et al., 2011; Independent Transport Safety Regulator, 2010).

One factor contributing to these concerns is the relative paucity
of research to establish empirical thresholds for classifying shifts
into risk categories (Williamson et al., 2011). To date, empirical
research on fatigue models has focused primarily on validation of
fatigue level estimates (Van Dongen, 2004). The presumption
made by most models of a simple linear relationship between
fatigue and the safety risks of work is not borne out by empirical
investigation (Williamson et al., 2011). Establishing the nature of
this relationship is problematic because of the low frequency of
accidents in some industries, poor accident reporting and/or
publication standards, and difficulties associated with causal
attribution in accident investigation (Armstrong et al., 2013; Radun
and Summala, 2004).

Another factor contributing to concerns with biomathematical
models is that outputs are applicable only to the average
individual. Fatigue model outputs are generated under the implicit
assumption that the fatigue consequences of a roster are uniform
for all employees. By implication, the amount of sleep obtained by
employees in the rest periods of a given roster is presumed to be
the same. In reality, some proportion of employees will obtain less
sleep than predicted, with the consequence that fatigue score
outputs are likely to underestimate the fatigue experienced by
these employees. Conversely, another proportion will obtain more
sleep than predicted, with the consequence that fatigue score
outputs are likely to overestimate the fatigue experienced by these
employees.

1.2. Purpose of this manuscript

The purpose of this investigation is to develop sleep transfer
functions that permit interpretation of fatigue score outputs for a

group of employees, i.e. rather than just the average employee. Like
other transfer functions, sleep provides an intuitive metric for the
non-expert to interpret fatigue level estimates. Thus, in the
presence of doubt about the exact link between fatigue scores and
fatigue-related risk, information about sleep could serve as useful
supplementary information on which to base decisions. A sleep
transfer function is potentially useful because it is one of the two
basic factors that contribute to fatigue level estimates. Percentile
distributions of sleep therefore provide a proxy for the likely
distribution of fatigue level estimates for a group of employees
working a given roster.

To quantify sleep, we use the prior sleep model proposed by
Dawson and McCulloch (2005), which posits simple heuristics to
evaluate whether an employee has obtained sufficient sleep
before starting work. According to this model, employees should
aim to obtain at least X h of sleep in the 24 h before work and Yh of
sleep in the 48h before work. The authors propose X and Y
thresholds of 5 and 12h, respectively, although subsequent
empirical modelling of performance and error suggest that an X
threshold of 6h might better distinguish poor performance
(Ferguson et al., 2011; Thomas and Ferguson, 2010). In this
manuscript, the empirical relationship between the fatigue level
outputs of a model and distributions of the sleep obtained by
employees in the 24 and 48 h before work was evaluated. The
proposed approach to extending the application of fatigue models
is potentially generalizable to other models, but the Fatigue Audit
InterDyne (FAID) software developed by our research group was
utilised in this instance.

2. Material and methods
2.1. Ethics

The research protocol complied with the Australian National
Guidelines on Ethical Conduct in Human Research. Ethical approval
for conducting the studies was granted by the Human Research
Ethics Committee of Central Queensland University.

2.2. Recruitment

Analyses were based on two data sets: (1) an original
investigation conducted in 1995-97 (Roach et al., 2003); and (2)
arepeat investigation conducted in 2010-12. The target population
in both studies were train drivers working metropolitan and rural
passenger and freight rail operations in Australia. Potential recruits
in the original 1995-97 study were targeted at seven rail
organisations at 1 of 14 depots located across five Australian
states. Potential recruits in the 2010-2012 study were sampled
from three rail organisations at 1 of 20 depots located across four
Australian states. Participation was open to all train drivers
employed by the collaborating organisations.

Recruitment sessions were arranged with collaborating rail
organisations at local depots. Attendees were informed that the
purpose of the investigation was to enhance biomathematical
models of fatigue and that participation would involve measure-
ment of sleep behaviour using activity monitors. Potential
recruits were also informed that participation was voluntary,
that any information collected would be de-identified and
confidential, and that non-participation or withdrawal from the
study would not influence future employment conditions. At the
closure of each recruitment session, attendees were given an
Information Sheet, Consent Form, General Demographic Ques-
tionnaire and a replied-paid envelope in which to return the
signed Consent Form should they agree to participate in the study.
Participants did not receive any financial incentive for completing
the study.
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2.3. Participants

The general population of Australian train and tram drivers
comprises roughly 12,000 individuals (96% males, 4% females)
(Long and Shah, 2013), with a mean age of 46 years (Logistics
Training Council, Rail Transport, 2013). The combined sample in
this study comprised of 347 (18 females, 329 males) train drivers,
but information collected from 25 of these participants was not
considered due to non-compliance with the study protocol. These
data were excluded either because activity monitors were not
worn or sleep/work diaries were not filled out. The remaining
322 drivers included 15 females (4.6%) and 309 males (95.4%).
These participants had a mean age of 39.5 (+14.2) years and had
been shift workers for 19.3 (£9.0) years.

2.4. Protocol

Drivers collected work and sleep information during the course
of their normal employment duties. Work start and end times were
recorded in a work diary. Reported times were cross-referenced
with company records when inconsistencies or reporting errors
were suspected. Bed-times and get-up times were likewise
recorded in a sleep diary and then cross-validated using wrist
activity data. Wrist activity monitors were worn on the non-
dominant wrist. Participants were instructed to wear the activity
monitor for the duration of the protocol and to complete dairy
entries at the start and end of all work and sleep periods,
respectively. This method of measuring sleep/wake behaviour has
been extensively validated in laboratory and field settings (Ancoli-
Israel et al., 2007).

In the 1995-97 study, participants completed the protocol for
2 weeks. Wrist activity levels were measured using Gaehwiler
activity monitors (Gaehwiler Electronic, Hombrechtikon,
Switzerland). The devices were configured to sample activity
counts in 30-s epochs. Sleep diary records and activity records
were cross-referenced to generate estimates of sleep timing and
duration using Sleepwatch software (Mini-Mitter, Oregon, USA).

In the 2010-12 study, participants completed the protocol for
4 weeks. Wrist activity levels were measured using Philips-
Respironics Actiwatch 2 activity monitors (Philips-Respironics,
Oregon, USA). The devices were configured to sample activity
counts in 1-min epochs. Sleep diary records and activity records
were cross-referenced to generate estimates of sleep timing and
duration using ActiWare software version 5.57 (Philips-Respir-
onics, Oregon, USA).

2.5. Data analysis

Fatigue level estimates were generated using the Fatigue Audit
InterDyne (FAID) software (InterDynamics, Adelaide, South
Australia). The FAID algorithms (Dawson and Fletcher, 2001) are
widely used in the Australian rail industry and have been validated
against fatigue data collected in both laboratory and field-based
studies (Roach et al., 2004a,b; Van Dongen, 2004). The FAID
software generates fatigue level estimates for all shifts of a roster
based on the work/rest history across the prior seven days. The
range of possible fatigue level outputs extend from O to 243, but
working time regulations in the Australian rail industry impose an
upper limit of 90.

The workday was divided into three equal time periods. These
included a morning period from 6:00 am to 1:59 pm, an afternoon
period from 2:00 pm to 9:59 pm, and a night period from 10:00 pm
to 5:59 am. Work periods were classified as morning, afternoon or
night shifts based on the time period in which the majority of work
hours were scheduled. Mean differences in 24-h and 48-h sleep

history between shift types were tested using mixed-effects
analysis of variance (ANOVA).

2.5.1. Sleep transfer functions

Shifts were classified into one of seven, ten-unit intervals
based on fatigue level outputs, either: 20-29, 30-39, 40-49, 50-
59, 60-69, 70-79 or 80-89. Sleep transfer functions were three
basic statistical summaries of the 24-h and 48-h sleep history
metrics. These included mean sleep history (+SD), percentile
distributions of sleep history, and per cent violations of threshold
values.

Mean sleep history across intervals were plotted and mixed-
effects ANOVA were performed to test for differences. Percentiles
(5th, 25th, 50th, 75th and 95th) for sleep history were calculated
for each interval. A linear regression was then fitted through the
percentile values of each interval. The fitted lines were plotted to
produce percentile distribution charts of sleep across fatigue level
intervals. Sleep history values were compared with X thresholds
(either 5 or 6 h of sleep) and Y thresholds (either 12 or 14 h of sleep)
of the prior sleep model. The percent frequency of shifts for which
observed sleep amounts were below X h in the prior 24h and Yh in
the prior 48 h were tallied for each fatigue level category and then
plotted.

The data sets used in the present analysis were not used in the
development or parameterisation of the FAID algorithms.

3. Results
3.1. Shifts and work times

In total, participants worked 2728 driving shifts across the data
collection periods, including 1214 morning shifts, 1104 afternoon
shifts, and 410 night shifts. They worked an average of 41.2
(£10.9) h per week, made up by 16.9 (£10.9) morning shift hours,
15.3 (£9.9) afternoon shift hours, and 9.1 (+7.3) night hours.

3.2. Prior sleep/wake history

On average, participants slept for 7.7 (+-1.7) h in the 24 h before
work and 15.1 (+£2.5) h in the 48 h before work. Table 1 reports the
prior sleep amounts for morning, afternoon, and night shifts.
Mixed-model ANOVA indicated significant differences across shift
tlmlng for 24—h, F2'2704 = 666, p< 001, and 48—h, F2'2494 = 733,
p <.001, sleep history, respectively. However, the mean differences
were marginal, equating to just 12 and 19 min of sleep in the 24 and
48 h prior to shifts.

3.3. Fatigue level intervals

Fig. 1 presents a frequency histogram for shifts classified into
each fatigue level interval. The majority of shifts (95.5%) had
fatigue level scores within the 20-89 range. Scores below this
range accounted for 1.9% of shifts while scores above this range
accounted for 2.6% of shifts (not shown).

Table 1
Sleep history prior to morning, afternoon and night shifts.
Morning Afternoon Night
Sleep prior 24 h 7.5 (£1.7) 7.7 (£1.6) 7.7 (£2.1)
Sleep prior 48 h 15.0 (£2.5) 15.3 (+2.4) 15.1 (£2.9)
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Fig. 1. Frequency histogram of shifts classified into 10-unit intervals of fatigue level
scores.

3.4. Sleep transfer functions

3.4.1. Mean sleep history

Fig. 2 depicts the sleep history across fatigue level intervals. The
24-h sleep history (upper panel) ranged from 8.0 (+1.5)h in the
lowest interval, i.e. 20-29, to 7.0 (+1.9) h in the highest interval, i.e.
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Fig. 2. Prior sleep/wake history for shifts classified into 10-unit intervals of fatigue
level scores. The upper and lower panels show the mean amount of sleep obtained
by drivers in the 24 and 48 h prior to work, respectively. Error bars denote standard
deviations.

80-89. The mean difference in sleep obtained equated to 64 min.
The 48-h sleep history (lower panel) ranged from 15.8 (£2.4) to
14.2 (+2.8) h across the same categories, with a mean difference of
97 min of sleep. Mixed-model ANOVA indicated a significant main
effect of interval for both metrics, F73384=10.10, p<.001 and
F72184=14.82, p <.001, respectively.

3.4.2. Percentile distributions of sleep history

Fig. 3 illustrates fitted percentile distributions of sleep history
across fatigue level intervals. The charts reveal a substantial range
in the amount of sleep obtained by participants before shifts. The
within-interval ranges, as indicated by the difference between the
5th and 95th percentiles, were substantially larger than the
between-interval range, as indicated by the change in 50th
percentiles between the lowest and highest intervals. The
within-interval ranges also increased across interval categories
as the absolute slopes (|m]|) of the fitted percentile lines were not
uniform. The fitted lines representing lower percentiles were
successively steeper than those representing higher percentiles.

To illustrate the relationships described above by example, the
difference in 24-h sleep history (upper panel) between the 5th and
95th percentiles in the lowest fatigue level interval (i.e. 20-29) was
5.0 h (the 90% Cl ranged from 5.8 to 10.8 h.). In the highest interval
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Fig. 3. Fitted percentile distributions of sleep in the 24 h (upper panel) and 48 h
(lower panel) before work (5th, 25th, 50th, 75th and 95th percentiles). The absolute
slope of each line, |m|, is indicated.
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(i.e. 80-89), the difference was 6.3 h (the 90% CI ranged from 4.0 to
10.3h). In comparison to these within-interval ranges, the
between-interval range at the 50th percentile was only 1.3h
(ranging from 8.0 h in the lowest interval to 6.7 h in the highest
interval). The between-interval range was not uniform across
percentile levels. At the 95th percentile, the range was just
0.5 hours across intervals, whereas at the 5th percentile, the range
was 1.7 h across intervals.

The difference in 48-h sleep history (lower panel) between the
5th and 95th percentiles in the lowest interval was also large at
7.4h (ranging from 11.9 to 19.3 h, respectively). In the highest
interval, the difference was 8.3h (ranging from 10.1 to 18.4h,
respectively). At the 50th percentile, the between-interval range
was 1.5 h (ranging from 15.8 h in the lowest interval to 14.3 h in the
highest interval). Again, the between-interval range was not
uniform across percentile levels. At the 95th and 5th percentiles,
the between-interval range was 0.9 hours and 1.9 h respectively.

3.4.3. Violation of X and Y sleep history thresholds

Fig. 4 shows the percent of shifts where participants failed to
obtain X hours of sleep in the 24 h. before shifts (upper panel) and
Yh of sleep in the 48 h. before shifts (lower panel). A near-constant
2.5% of shifts violated an X threshold of 5 h when the fatigue level
interval was below 50. Violations increased steadily across
subsequent intervals to peak at nearly 15.0% of shifts. The percent
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Fig. 4. Violation of prior sleep rules for shifts classified into 10-unit intervals of
fatigue level scores. The top panel shows the per cent violation of the 24-h rule at
two X threshold values (5 and 6 h). The lower panel shows the per cent violation of
the 48-h rule at two Y threshold values (12 and 14 h).

of shifts violating an X threshold of 6 h was nearly double that
across all intervals. Analogous distributions were obtained for Y
threshold values, wherein ~5.0% of shifts had a 48-h sleep history
below 12 h across fatigue level intervals below 50. The percent of
violations increased across subsequent intervals and reached a
maximum of nearly 25.0% of shifts in the 70-79 interval. The 14-h
threshold yielded nearly double the number of violations across all
intervals.

4. Discussion

Software-based models of fatigue have typically been put
forward as tools to evaluate the fatigue-related risks associated
with workplace work/rest schedules. The original versions of these
models lacked specific information enabling end-users to link
fatigue level outputs with subsequent risk levels within a given
industry. In the absence of empirical data, an alternative approach
to mitigate potential safety issues was to benchmark fatigue
output scores against standard roster patterns (e.g. standard 9 am-
5 pm standard week, 4 x 12-h night shifts) or other patterns
already accepted as safe by the industry (Dawson and Fletcher,
2001). Thus, a novel pattern of work could be considered safe if the
calculated fatigue level scores were less than those for operations
already considered safe. This historical legacy minimised radical
change in the types of operations that were permitted under newly
implemented fatigue-risk management approaches. However, it
also obscured the distinction between fatigue level outputs, on the
one hand, and the safety risks of operations, on the other.

Over-reliance on software-based models to evaluate fatigue-
related safety risks is a commonly cited concern associated with
fatigue-risk management systems (Civil Aviation Safety Authority,
2014; Fourie et al., 2010; Independent Transport Safety Regulator,
2010). This is because the link between fatigue levels and safety is
not always linear, but is moderated by a host of mitigating variables
including safety culture, duty tasks, and inter-individual differ-
ences across employees (Williamson et al., 2011). Fatigue may even
have paradoxical effects on risk because employees sometimes
exhibit risk mitigation strategies in recognition of an elevated
potential for fatigue-related error (Gander et al., 2011 ). Community
tolerance for risk may also vary across industry (Dawson and Zee,
2005). Thus, long work hours may be tolerated for some
professions because the consequences of disrupted services
outweigh the risk of fatigue-related accidents, e.g. medical doctors.
The community is less likely to accept very long work hours for
professions when the consequences of disrupted services are
relatively benign, e.g. aviation pilots. For these reasons, setting
fatigue score thresholds which distinguish between safe and
unsafe work schedules is problematic for regulators. An alternative
approach to risk classification is to instead focus on using models
to manage the sleep behaviour of employees.

In this study, the relationship between fatigue model outputs
and the amount of sleep obtained by employees in the 24 and 48 h
before work was investigated. The sampled rosters were vetted for
regulatory compliance using a software-based fatigue model
before operations commenced. Unforseen events occasionally
meant that drivers worked unplanned hours that were outside of
regulatory limits, i.e. a fatigue level score >90. Otherwise, the
assumption underlying compliance was that the average employee
would have obtained sufficient sleep prior to shifts. This
assumption proved valid in the current study, wherein drivers
obtained an average of 7.7 h of sleep in the 24 h prior to shifts and
15.1 h of sleep in the 48 h prior to shifts. This is within the normal
daily sleep range recommended for adults, i.e. 7.0-8.0 h per day
(Ferrara and De Gennaro, 2001; National Institutes of Health,
2011). There was also a robust linear decrease in the amount of
sleep obtained by employees across increasing fatigue level
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intervals. In comparison, only minor differences in prior sleep
amounts were observed between morning, afternoon, and night
shifts, despite well-established links between shiftwork opera-
tions and reduced sleep (Akerstedt, 2003; Kecklund and Akerstedt,
1995; Knauth et al, 1980). Taken together, these findings
demonstrate the utility of fatigue models for designing round-
the-clock rosters that provide sufficient sleep opportunities for the
average employee.

There was substantial inter-shift variation in the amount of
sleep obtained by employees prior to shifts. The variability was
greater within fatigue level intervals than the mean differences
across them by a factor of roughly five-fold. Trait-like inter-
individual differences in physiological sleep parameters contribute
to inter-individual variation in sleep behaviour (Tucker et al., 2007;
Van Dongen et al., 2005). However, physiological contributions are
not exclusive since shiftworkers exhibit intra-individual differ-
ences in sleep behaviour which are almost as great (Darwent et al.,
2012; Dorrian et al., 2012). Thus, the variation in sleep amounts
observed in this study most likely reflect the contribution of stable
inter-individual differences in sleep physiology and idiosyncratic
personal and social factors that influence sleep behaviour on a day-
to-day basis. Given that sleep is one of the only two principle
determinants of fatigue level (the other being circadian rhythmic-
ity) (Borbely and Achermann, 1999), the observed differences in
sleep amounts would be expected to yield corresponding differ-
ences in the fatigue levels experienced by employees. Hence, these
findings suggest that within any given interval of estimated fatigue
scores, the range of actual fatigue levels experienced by the
employee group is likely to be large.

Fatigue-risk management is typically viewed as a shared
responsibility (Dawson and McCulloch, 2005). Organizations are
responsible for providing employees with sufficient sleep oppor-
tunities, while employees are responsible for getting adequate
sleep in those opportunities. The study findings demonstrate that
optimization of planned work/rest schedules using fatigue models
has utility in regards to the former but is of limited value in
ensuring the latter. Thus, pre-operational screening procedures
could be improved if measures sensitive to inter-shift variability in
employees’ sleep behaviour were developed. One existing
approach is to calculate fatigue scores for individual employees
by inputting individual sleep times into a fatigue model (Reifman,
2004). The advantage of this approach is that both major
physiological contributors to fatigue are taken into account.
However, it implies a software interface that accepts novel sleep
inputs and a system for capturing employees’ sleep times. It is
therefore best suited to small organisations with few employees,
i.e. for ease of data entry, or large organisations with the capacity to
automate data input and analysis e.g. Rangan et al. (2013). An
alternative is to use the prior sleep history approach taken in this
study—the advantage of which is the relative ease of implementa-
tion and the intuitive familiarity of the sleep metrics used.

According to the original prior sleep model, employees should
obtain at least 5 h of sleep in the 24 h before work and 12 h of sleep
in the 48 h before work (Dawson and McCulloch, 2005). While the
association between reduced sleep time and elevated accident risk
is well-established (Akerstedt, 2000; Drake et al., 2010; Philip and
Akerstedt, 2006; Young et al., 1997), the notion that ‘sufficient
sleep’ is a definable quantity is controversial (Van Dongen et al.,
2003a). This is because the effect of sleep loss on fatigue is manifest
in continuous dose-response deficits (Belenky et al., 2003; Van
Dongen et al., 2003b), not at some physiological tipping point as
the prior sleep model could be seen to imply. However, the
objective in setting thresholds is not to define this tipping point,
but rather to balance the safety-risks posed by sleep loss against
unnecessary restriction on organisational efficiency and personal
freedoms. Hence, a general set of sleep transfer functions, as

presented in this study, would permit exploration of the organisa-
tional burden associated with different threshold values.

In this study, there were a proportion of shifts for which
employees failed to meet the 5.0 and 12.0 h thresholds, irrespective
of the sleep opportunities provided. The non-compliance rate rose
above this baseline only for shifts with fatigue level scores beyond
a score of 50. Below this, it was not possible to differentiate
between reduced sleep caused by more demanding shiftwork
schedules, on the one hand, and that caused by idiosyncratic day-
to-day sleep disturbances, on the other. If these thresholds were
accepted, then shifts with a fatigue level estimate above 50 should
be targeted for further screening to identify employees with non-
compliant sleep behaviours. Approximately 43% of planned shifts
in this study fell into this range. Of these, roughly 15% were
associated with non-compliance of one or both of these thresholds
(i.e. roughly 6% of shifts in total). Higher sleep thresholds of 6.0 and
12.0 h were associated with a two-to-three fold greater rate of non-
compliance across all interval ranges. If these thresholds were used
instead, then shifts with a fatigue level estimate above 20 would be
targeted for further screening because the frequency of non-
compliance increased from this mark. Approximately 98% of
planned shifts fell into this range, and of these, roughly 30%
violated one or both thresholds.

The proposed approach attempts to ground the fatigue score
predictions made by biomathematical models by plotting outputs
against empirical distributions of shiftworker sleep. The extent to
which the distributions of sleep observed in our population of train
drivers can be generalized to other industries is unknown, but
probably depends on the demographic profile of the industry
under consideration. An analogous dataset could be used to
generate sleep transfer functions for any given population or
biomathematical model of fatigue. The usefulness of such
functions would ultimately depend on the empirical relationship
between predicted fatigue scores and observed sleep times. Hence,
the applicability of this approach to novel populations in industries
that use different biomathematical models requires further
empirical investigation.

Knowledge of the prior sleep associated with mean fatigue
scores would provide information on the likely distribution of
fatigue scores around those means. One limitation in the
application of this logic is the implicit assumption that individuals
are equally susceptible to sleep loss. Previous research has
demonstrated inter-individual differences in performance efficacy
in response to equivalent levels of sleep debt (Van Dongen et al.,
2004). In practice, this means that some individuals may exhibit
fatigue-related performance deficits despite having obtained, in
theory, an adequate amount of sleep. Conversely, others may
exhibit normal performance despite having obtained a less than
adequate amount of sleep. Identification of individuals who exhibit
signs and symptoms of fatigue despite having obtained threshold
levels of sleep remains fertile ground for ongoing research in
fatigue safety management systems.

Biomathematical models of fatigue provide an estimate of the
fatigue implications associated with a given work/rest schedule.
Several recent reviews have identified limitations associated with
fatigue prediction algorithms and the use of models in industrial
settings (Gander et al., 2011; Dawson and Zee, 2005). In this
manuscript, we propose that fatigue models should be viewed not
as tools for quantifying fatigue-related risk, but rather as tools for
mitigating risk through the identification of shifts where employ-
ees' sleep may be reduced. The advantage of an emphasis on
empirical sleep distributions, as opposed to fatigue estimates
based on work schedules, is that sleep information is readily
appreciated by non-experts and safety evaluations would not rely
solely on fatigue score predictions. Focusing on sleep prioritizes
the importance of scheduling adequate sleep opportunities for all
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employees and for providing education, counselling and/or
alternative scheduling arrangements where individuals demon-
strate difficulty with compliance. Thus, in the absence of
universally-applicable risk-based criteria for classifying model
outputs, such as safe vs. unsafe, low vs. moderate vs. high, we
suggest the more productive approach is to classify outputs on the
basis of their implications for the distribution of employees’ sleep,
e.g. no aggregate sleep reduction vs. aggregate sleep reduction. We
envisage that industry members would use this information to
evaluate, based on industry-specific expertise and knowledge,
whether a work schedule provides sufficient sleep opportunity for
employees to perform work tasks safely.

Conflict of interest

Drew Dawson receives royalties from InterDynamics Pty Ltd. for
a license associated with sleep opportunity prediction software
(FAID™). No conflicts of interest are reported for David Darwent,
Jessica Patterson, Greg Roach or Sally Ferguson.

Acknowledgements

Financial support for the study was provided by a CRC for Rail
Innovation research grant—Next Generation Fatigue Models:
Project number: R2.110.

References

Akerstedt, T., 2000. Consensus statement: fatigue and accidents in transport
operations. J. Sleep Res. 9, 395.

Akerstedt, T., 2003. Shift work and disturbed sleep/wakefulness. Occup. Med.
(Lond.) 53, 89-94.

Ancoli-Israel, S., Cole, R., Alessi, C., Chambers, M., Moorcroft, W., Pollak, C., 2007. The
role of actigraphy in the study of sleep and circadian rhythms: American
academy of sleep medicine review paper. Sleep 26, 342-392.

Armstrong, K., Filtness, A.J., Watling, C.N., Barraclough, P., Haworth, N., 2013.
Efficacy of proxy definitions for identification of fatigue/sleep-related crashes:
an Australian evaluation. Transp. Res. Part F: Traffic Psychol. Behav. 21, 242-
252.

Balkin, T.J., Horrey, WJ., Graeber, R.C., Czeisler, C.A., Dinges, D.F., 2011. The challenges
and opportunities of technological approaches to fatigue management. Accid.
Anal. Prev. 43, 565-572.

Belenky, G., Wesensten, N.J., Thorne, D.R., Thomas, M.L,, Sing, H.C., Redmond, D.P.,
Russo, M.B., Balkin, TJ., 2003. Patterns of performance degradation and
restoration during sleep restriction and subsequent recovery: a sleep dose-
response study. J. Sleep Res. 12, 1-12.

Borbely, A.A., Achermann, P., 1999. Sleep homeostasis and models of sleep
regulation. J. Biol. Rhythms 14, 559-570.

Cabon, P, Deharvengt, S., Grau, ].Y., Maille, N., Berechet, L., Mollard, R., 2012.
Research and guidelines for implementing fatigue risk management systems for
the French regional airlines. Accid. Anal. Prev. 45, 41-44.

Civil Aviation Safety Authority, 2014. Biomathematical Fatigue Models. Civil
Aviation Safety Authority.

Darwent, D., Dawson, D., Roach, G.D., 2012. A model of shiftworker sleep/wake
behaviour. Accid. Anal. Prev. 45, 6-10.

Dawson, D., Fletcher, A., 2001. A quantitative model of work-related fatigue:
background and definition. Ergonomics 44, 144-163.

Dawson, D., lan Noy, Y., Harma, M., Akerstedt, T., Belenky, G., 2011. Modelling
fatigue and the use of fatigue models in work settings. Accid. Anal. Prev. 43,
549-564.

Dawson, D., McCulloch, K., 2005. Managing fatigue: it's about sleep. Sleep Med. Rev.
9, 365-380.

Dawson, D., Zee, P., 2005. Work hours and reducing fatigue-related risk: good
research vs good policy. JAMA 294, 1104-1106.

Dijk, D.J., LArcher, S.N., 2009. Light, sleep, and circadian rhythms: together again.
PLoS Biol. 7, e1000145.

Dorrian, J., Darwent, D., Dawson, D., Roach, G.D., 2012. Predicting pilot’s sleep during
layovers using their own behaviour or data from colleagues: implications for
biomathematical models. Accid. Anal. Prev. 45, 17-21.

Drake, C., Roehrs, T., Breslau, N., Johnson, E., Jefferson, C., Scofield, H., Roth, T., 2010.
The 10-year risk of verified motor vehicle crashes in relation to physiologic
sleepiness. Sleep 33, 745.

Ferguson, S.A., Paech, G.M., Dorrian, ]., Roach, G.D., Jay, S.M., 2011. Performance on a
simple response time task: is sleep or work more important for miners. Appl.
Ergon. 42, 210-213.

Ferrara, M., De Gennaro, L., 2001. How much sleep do we need? Sleep Med. Rev. 5,
155-179.

Fourie, C., Holmes, A., Bourgeois-Bougrine, S., Hilditch, C., Jackson, P., 2010. Fatigue
risk management systems: a review of the literature. Road Safety Research
Report No. 10. Department of Transport, London.

Gander, P, Hartley, L., Powell, D., Cabon, P., Hitchcock, E., Mills, A., Popkin, S., 2011.
Fatigue risk management: organizational factors at the regulatory and industry/
company level. Accid. Anal. Prev. 43, 573-590.

Independent Transport Safety Regulator, 2010. Transport Safety Alert 34: Use of Bio-
mathematical Models in Managing Risks of Human Fatigue in the Workplace.
Independent Transport Safety Regulator.

Jones, C.B., Dorrian, J., Rajaratnam, S.M., Dawson, D., 2005. Working hours
regulations and fatigue in transportation: a comparative analysis. Saf. Sci. 43,
225-252.

Kecklund, G., Akerstedst, T., 1995. Effects of timing of shifts on sleepiness and sleep
duration. J. Sleep Res. 4, 47-50.

Knauth, P,, Landau, K., Drége, C., Schwitteck, M., Widynski, M., Rutenfranz, J., 1980.
Duration of sleep depending on the type of shift work. Int. Arch. Occup. Environ.
Health 46, 167-177.

Lerman, S.E., Eskin, E., Flower, D J., George, E.C., Gerson, B., Hartenbaum, N., Hursh, S.
R., 2012. Fatigue risk management in the workplace. Int. J. Occup. Environ. Med.
54, 231-258.

Logistics Training Council, Rail Transport, 2013. Logistics Industries Environmental
Scan. Logistics Training Council for the Western Australian Department of
Training and Workforce Development.

Long, M., Shah, C., 2013. Australian Transport and Logistics Industry: Forecasts of
Labour and Skill Requirements 2013-17. Transport & Logistics Industry Skills
Council.

Mallis, M.M., Mejdal, S., Nguyen, T.T., Dinges, D.F., 2004. Summary of the key
features of seven biomathematical models of human fatigue and performance.
Aviat. Space Environ. Med. 75, A4-A14.

National Institutes of Health, 2011. Your Guide to Healthy Sleep. US Department of
Health and Human Services.

Philip, P., Akerstedt, T., 2006. Transport and industrial safety, how are they affected
by sleepiness and sleep restriction? Sleep Med. Rev. 10, 347-356.

Radun, [., Summala, H., 2004. Sleep-related fatal vehicle accidents: characteristics of
decisions made by multidisciplinary investigation teams. Sleep 27, 224-228.

Rangan, S., Bowman, J.L., Hauser, W.J., McDonald, W.W., Lewis, R.A., Van Dongen, H.
P., 2013. Integrated fatigue modeling in crew rostering and operations. Can.
Aeronaut. Space J. 59, 1-6.

Reifman, J., 2004. Alternative methods for modeling fatigue and performance. Aviat.
Space Environ. Med. 75, A173-A180.

Roach, G.D., Fletcher, A., Dawson, D., 2004a. A model to predict work-related fatigue
based on hours of work. Aviat. Space Environ. Med. 75, A61-A69.

Roach, G.D., Fletcher, A., Dawson, D., 2004b. Response to commentaries on a model
to predict work-related fatigue based on hours of work. Aviat. Space Environ.
Med. 75, A74.

Roach, G.D., Reid, K., Dawson, D., 2003. The amount of sleep obtained by locomotive
engineers: effects of break duration and time of break onset. Occup. Environ.
Med. 60, e17.

Sussman, D., Coplen, M., 2000. Fatigue and alertness in the United States railroad
industry part I: the nature of the problem. Transp. Res. Part F: Traffic Psychol.
Behav. 3, 211-220.

Thomas, M.J., Ferguson, S.A., 2010. Prior sleep, prior wake, and crew performance
during normal flight operations. Aviat. Space Environ. Med. 81, 665-670.
Tucker, A.M., Dinges, D.F., Van Dongen, H.P., 2007. Trait interindividual differences in

the sleep physiology of healthy young adults. J. Sleep Res. 16, 170-180.

Van Dongen, H.P.,, 2004. Comparison of mathematical model predictions to
experimental data of fatigue and performance. Aviat. Space Environ. Med. 75,
A15-A36.

Van Dongen, H.P,, Baynard, M.D., Maislin, G., Dinges, D.F., 2004. Systematic
interindividual differences in neurobehavioral impairment from sleep loss:
evidence of trait-like differential vulnerability. Sleep 27, 423-433.

Van Dongen, H.P.,, Maislin, G., Mullington, ].M., Dinges, D.F., 2003b. The cumulative
cost of additional wakefulness: dose-response effects on neurobehavioral
functions and sleep physiology from chronic sleep restriction and total sleep
deprivation. Sleep 26, 117-129.

Van Dongen, H.P,, Rogers, N.L., Dinges, D.F., 2003a. Sleep debt: theoretical and
empirical issues. Sleep Biol. Rhythms 1, 5-13.

Van Dongen, H.P,, Vitellaro, K.M., Dinges, D.F,, 2005. Individual differences in adult
human sleep and wakefulness: leitmotif for a research agenda. Sleep 28, 479-
496.

Williamson, A., Lombardi, D.A., Folkard, S., Stutts, J., Courtney, T.K., Connor, ].L., 2011.
The link between fatigue and safety. Accid. Anal. Prev. 43, 498-515.

Young, T., Blustein, ]., Finn, L., Palta, M., 1997. Sleepiness, driving and accidents:
sleep-disordered breathing and motor vehicle accidents in a population-based
sample of employed adults. Sleep 20, 608-613.


http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0005
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0005
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0010
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0010
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0015
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0015
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0015
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0020
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0020
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0020
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0020
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0025
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0025
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0025
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0030
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0030
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0030
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0030
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0035
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0035
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0040
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0040
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0040
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0050
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0050
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0055
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0055
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0060
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0060
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0060
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0065
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0065
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0070
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0070
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0075
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0075
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0080
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0080
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0080
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0085
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0085
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0085
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0090
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0090
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0090
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0095
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0095
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0100
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0100
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0100
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0105
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0105
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0105
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0110
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0110
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0110
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0115
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0115
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0115
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0120
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0120
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0125
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0125
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0125
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0130
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0130
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0130
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0135
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0135
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0135
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0140
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0140
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0140
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0145
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0145
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0145
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0150
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0150
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0155
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0155
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0160
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0160
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0165
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0165
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0165
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0170
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0170
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0175
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0175
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0180
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0180
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0180
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0185
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0185
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0185
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0190
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0190
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0190
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0195
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0195
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0200
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0200
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0205
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0205
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0205
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0210
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0210
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0210
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0215
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0215
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0215
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0215
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0220
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0220
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0225
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0225
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0225
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0230
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0230
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0235
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0235
http://refhub.elsevier.com/S0001-4575(15)00192-X/sbref0235

	Managing fatigue: It really is about sleep
	1 Introduction
	1.1 Biomathematical models of fatigue
	1.2 Purpose of this manuscript

	2 Material and methods
	2.1 Ethics
	2.2 Recruitment
	2.3 Participants
	2.4 Protocol
	2.5 Data analysis
	2.5.1 Sleep transfer functions


	3 Results
	3.1 Shifts and work times
	3.2 Prior sleep/wake history
	3.3 Fatigue level intervals
	3.4 Sleep transfer functions
	3.4.1 Mean sleep history
	3.4.2 Percentile distributions of sleep history
	3.4.3 Violation of X and Y sleep history thresholds


	4 Discussion
	Conflict of interest
	Acknowledgements
	References


